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Trace formula for products of diagonal matrix elements in chaotic systems
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We derive a trace formula fae,A,,Bn, - - - S(E—E,), whereA,, is the diagonal matrix element of the
operatorA in the energy basis of a chaotic system. The result takes the form of a smooth term plus periodic-
orbit corrections; each orbit is weighted by the usual Gutzwiller factor tifgB;, ..., where A, is the
average of the classical observaBlelong the periodic orbip. This structure for the orbit corrections was
previously proposed by Main and Wunri&hys. Rev. 650, 1630(1999] on the basis of numerical evidence.

PACS numbsg(s): 05.45.Mt, 03.65.Sq

[. INTRODUCTION If we setA=I as well, we recover the original Gutzwiller
trace formula for the density of statg]. This is the essen-

In a recent papell], Main and Wunner introduced the tial motivation of Main and Wunner for Eq2). They pro-
weighted density of states vide strong numerical evidence in favor of it, but they do not
give an analytic derivation.

In this paper, we remedy this situation by deriving E2).
from a generalization of a trace formula originally due to
Wilkinson [3] (see alsd5,8]). Furthermore, we provide an
Here A,B, ... are operators with smooth classical limits explicit expression for the smooth term.

(Weyl symbol3, and A,,=(n|A|n) is the diagonal matrix

element ofA in the energy basis. This is a simple generali- Il. ANALYSIS

zation ofp®=3 A, .8(E—E,), which has been studied ex-

tensively[2—9]. For chaotic systems, Main and Wunner pro-  We first consider the case of two operatgksandB, and
posed that extend the results to an arbitrary number in Sec. Ill. Follow-

ing Wilkinson[3], we define

p AP =3 AnBin - A(E~Ep). (1)

1
p(A,B,---):pgA'B"")-l——ﬁE Apo .. -Wpy (2)
)

S<E,A>z;n AnmBmnd1(E—3(En+Em)

where the sum is over all primitive periodic orbiswith
energyE, and X 8,(A—(E—Ep)). 5

1 (7 Here 6,(E) and 6,(E) are smeared functions. Rigorous
Ap= T_pfo AXp(1))dt 3 results concernin@(E,A) have been proven in the case that
the Fourier transforms of these smear@dunctions have
is the average value of the Weyl symbolAflong the orbit;  compact supporf8,9]. We will therefore make the simple
here,, is the period of the orbit, an¥ = (q,p) denotes both  choice
coordinates and momenta. Also,

5 E — i dt iEt/h 6
R 7S = p2 " i(E)= . it ©)
w,=Rep, ——
P |de(M},—1)|2 _
_sm(ETi/ﬁ)
is the Gutzwiller weight factors,, u,, andM, are respec- B 7E ! @)

tively the action, Maslov index, and monodromy matrix of
the orbit. The first term on the right-hand side of E&)  wherer;, i=1,2, is a time cutoff. Our results will come from
represents the part that remains smooth in the semiclassiogarious manipulations oB(E,A) with A=0.
limit; it should be O(% ™), wheref is the number of free- We begin by writing
doms. However, Main and Wunner do not give an explicit
formula for it.
If we setB=...=Iin Eq. (1), and hencB,= ...=1 S(E,0)= 52(0); AnnBnné1(En—E)
in Eq. (2), then we recover the trace formula fot [4-9].
$2 S AgBneorne)
T n,m#n n m
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where w,,=(E,—E.,)/%. The first term on the right-hand
side is the one we want; except for the factor &f0)
=r1,/1h, it is the same as the right-hand side of EL), in
the limit as7;—. To get rid of the unwanted second term,
we taker, to be much greater than the Heisenberg time
=2mxhpg; here

ol

is the Weyl formula for the mean density of states.rjf
>7,, then we typically havgw,,7,>1. In this case,
sin(w,,m) varies erratically a: and m are varied. Further-
more, the factor of 1KE,—E,,) can be written asq/(n
—m)=(7y/27h)/(n—m), up to a factor which also varies
erratically. We then have

2f

S(E—H(X)) )

(27h)f

)
S(E,00= =+ > AyBnnd1(E,—E)
ah 5

Antmanm
n—m

TH
27°h
m n,m#n

51(E_ %(En'l' Em)).
(10)

where we can think oR,,, as a random number. Provided

that |A,| and|B,,, do not tend to increase am—n| in-

creasesin general, a decrease is to be expegtdte sum in
the second term should quickly converge. Then we have

h
T—ZS<E,0>=; AnBnnd1(En—E)+O(y /7). (12)

The first term on the right-hand side is the same as the right-

hand side of Eq(1), providedr;> 1, and the second term
is small if 7,> 1.

We now wish to evaluateS(E,A) semiclassically. We
first use Eq.(6) in Eqg. (5) to get

+7 dt . +7p dt’ .
— —iAt/h +iEt' /A ’
S(E,A) f_TZ 27The J'_Tl the F(t,t"),
(12
where we have defined
F(t,t’)EZ Antmnefi(En+Em)t’/2he+i(EnfEm)t/h.
nm
(13

The key point is that we can write(t,t’) as a single trace,

F(t,t")=TrU(—t+3t")AU(t+ 3t")B, (14)
whereU(t)=e """ s the time-evolution operator.

To simplify our exposition, we temporarily make tfath-
erwise unnecessarassumption that the Weyl symbols Af
and B are functions of only the coordinatgsand not the
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F(t,t’)=J d'gyd gx(aa|U(—t+3t")|dz)

XA(G2)(A|U(t+3t)|a)B(ay). (15
We now make use of the semiclassical approximaftityhoj
to get

fdfqz(QsIU(—H%t’)|q2>A(qz)<q2|U(t+%t’)lq1>

zpastKpatAqs,ql:t’>A(qpaw(t+%t')). (16)

Here the sum is over all classical paths that go frgmat
time zero tog; at timet’, qpaef7) is the position reached at
time 7 along a particular path, anl,.{(ds,d;;t") is the
contribution of that path to the propagatays|U(t’)|qg,) in
the semiclassical limit.

We now perform the integrals ovef'q, in Eq. (15) and
over dt’ in Eq. (12) by stationary phasg2-9|. We get a
contribution from zero-length path$or whicht’=0 at the
point of stationary phageand a sum over contributions from
periodic orbits(for which t’=7, at the point of stationary
phase. The result is

+75

S(E’A)ZJ_TZ dt

—iAt/h

— 2 wCy(t)|,

Tp< 1
17

>7hC poCo(t) +

where the sum is over all primitive periodic orbits with pe-
riod less thanr;. Also, we have introduced the energy-
surface correlation function

1 2f

pol (27h)f

Co(t

S(E—H(X))AX(1))B(X), (18

and the orbit correlation function
1 Tp 1
Cp(t)ET_p . dTAXp(7+t+375))B(Xp(7). (19

Next, we must separate out a possible constant term in
Co(t). To do so, we take the microcanonical average of
A(X) on a surface of constant energy

1 2fx

A= —
0 Po

S(E—H(X)A(X), (20

(2mh)f

and defineA(X)=A(X)—A, and B(X)=B(X)—B,. We
then haveCy(t)=A,Bo+ Co(t), where

6(t)=if dx S(E—H(X)AX(1))B(X). (22)
T pol (2ah)f ( (DIBEO.

(2

momentap. We can then evaluate the trace by inserting twoSince the system is chaotiand hence mixing Co(t)—0 as

complete sets of position eigenstates, leading to

t— *+o. We now have
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+7p dt
S(E,A)ZpvoBoéz(A)-;-f 5 ﬁe—lAt/ﬁ

poCo(t) PP = poA +gJ+TH16 ) (29
0 —my 2mh oL

1 Here g=2 if the system is time reversal invariant, agd
+ oh TpZTl WPCP(t)}' (22) =1 if it is not. Equation(28) is consistent with Eqg11) and
(27) if we sett,= 74/29. We therefore conclude that, in the
Next, we use the fact tha(t) is periodic int with period ~ more general case where# B,
75, Which allows us to writd3]

4o (AB) i dt o
C S Te 2k 23 Po _PvoBo+9 Co(t)- (29
pll)= pk® P

k=—o

If we also setr;= 75, then the final term in Eq27) will be
where negligible for short periodic orbit&lthough it may become
significant as the orbit period, approaches). This pro-

L(m s vides a theoretical explanation for the numerical results of
FPKZT_JO dte” 27! PCp(1). (24) Main and Wunnef1].
Equation(29) is an explicit formula for the smooth term.
We note in particular that However, forr, ,~ 7y, it is an uncontrolled approximation,
since the neglected terms in Eq&1) and (27) are not for-
[o=A,Bp. (25 mally suppressed. Nevertheless, the agreement of(ZB).
with the results of4,6,7,15,16 leads us to believe that Eq.
Now using Eqg.(23) in Eqg. (22), we get (29 is correct.

+7p dt
S(EvA):POAoBO52(A)+Pof > h g IAUAG o) Ill. EXTENSIONS

We now return to Eq(1) and consider a string of diagonal

1 I matrix elements oN operatorsA,B, ... ,Z. We can find a
e > Wy X Toda(A—2mhki ). trace formula for Eq(1) by starting from
<7'1 k=—o
(26) F(ty, ... tn)=TrU(t)AU(t,)B ... U(ty)Z. (30

This result is a slight generalization of Wilkinsor'3].

We now setA=0. For thek=0 term in the sum over
orbit modes, we have a factor &,(0)=7,/7#; for the k
#0 terms, we use Ed7). After dividing through bys,(0),

We then make Fourier transforms with respect to suitable
linear combinations of thg’s to construct

and usingpo= r4/27%, the result is S(E,A,, ... AN)
(72 dt « - AunBo. . O1| E— = (E+E,+
—S(E 0)=poAoBo+ 5 — J 21Tﬁco(t) nn; nmBmi - - - 61 N(EntEmt ...
1 X 52(A2—(Eq—Ep))os(A E)..
n _ﬁ z Wpro 2(a2™ m 33— |

™ Tp<T1 (31)

1 3 o, U pksin(2akry [ 7p) A straightforward generalization of the analysis in Sec. Il

wﬁ o= T2 P&0 27K ' then leads to a result analogous to E@d) and (27), thus

verifying Eq. (2).

(27 The leading contribution to the smooth term is of the form

PoAo - . . Zy. There are also subleading contributions that de-
pend on various energy-surface correlation functions. For ex-
ample, forN=3 we have

If we assumer,> 74, the last term can be neglected. Com-
paring Egs.(11) and(27), and recalling Eq(25), we verify
Eqg. (2). This is our key result.

There is, however, an important caveat. Vzlfe 1r)1ave taken N
both r; and 7, to be much greater than,~#% ("1, The (AB.Z) _ if ™ =Bz
rigorous treatment of8,9], on the other hand, requires Po T =poRAoBoZot 5 . AL AcCo™(1)
and 7, to remain fixed asi—0, This suggests that a com-

promise of 7 ,~ 7y might be optimal, which is consistent +BoCaA(t) +ZoChB(1)]

with other analyses of the trace formylil—14. To further

investigate this issue, we consider the special daseB. 1/ g \?(+m™ *TH =Bz

The magnitude of fluctuations in the values of the diagonal oo 2mh f_TH dtlJ_TH dt,Co™(ty,tp).

matrix elements of an operatok have been previously
evaluated 4,6,7,15,18, with the result that (32
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IV. CONCLUSIONS

We have formulated and verified a precise version of Eq.
(2), which was originally proposed by Main and Wunnéf

Here Cy®(t) is given by Eq.(21),

~ ABZ 1 d2fx for chaotic systems. Our derivation provides an analytic ex-
Co “(ty,ty)=— ; planation for their numerical results.
PoJ (27h) Main and Wunner also proposed an equation analogous to
~ ~ = Eq. (2) for integrable systems that generalizes the Berry-
X S(E=H(XNDAMX(t1)B(X(t2))Z(X), Tabor trace formuld17]. We have not attempted to derive

(33 this version, but clearly it would be of interest to do so.
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