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Trace formula for products of diagonal matrix elements in chaotic systems

Sanjay Hortikar* and Mark Srednicki†
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~Received 4 August 1999!

We derive a trace formula for(nAnnBnn . . . d(E2En), whereAnn is the diagonal matrix element of the
operatorA in the energy basis of a chaotic system. The result takes the form of a smooth term plus periodic-
orbit corrections; each orbit is weighted by the usual Gutzwiller factor timesApBp . . . , where Ap is the
average of the classical observableA along the periodic orbitp. This structure for the orbit corrections was
previously proposed by Main and Wunner@Phys. Rev. E60, 1630~1999!# on the basis of numerical evidence.
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I. INTRODUCTION

In a recent paper@1#, Main and Wunner introduced th
weighted density of states

r (A,B, . . . )[(
n

AnnBnn . . . d~E2En!. ~1!

Here A,B, . . . are operators with smooth classical lim
~Weyl symbols!, and Ann5^nuAun& is the diagonal matrix
element ofA in the energy basis. This is a simple genera
zation ofr (A)[(nAnnd(E2En), which has been studied ex
tensively@2–9#. For chaotic systems, Main and Wunner pr
posed that

r (A,B, . . . )5r0
(A,B, . . . )1

1

p\(
p

ApBp . . . wp , ~2!

where the sum is over all primitive periodic orbitsp with
energyE, and

Ap[
1

tp
E

0

tp
A„Xp~ t !…dt ~3!

is the average value of the Weyl symbol ofA along the orbit;
here,tp is the period of the orbit, andX5(q,p) denotes both
coordinates and momenta. Also,

wp[Re(
r 51

`
tpei (Sp /\2mpp/2)r

udet~M p
r 2I !u1/2

~4!

is the Gutzwiller weight factor;Sp , mp , andM p are respec-
tively the action, Maslov index, and monodromy matrix
the orbit. The first term on the right-hand side of Eq.~2!
represents the part that remains smooth in the semiclas
limit; it should beO(\2 f), where f is the number of free-
doms. However, Main and Wunner do not give an expl
formula for it.

If we setB5 . . . 5I in Eq. ~1!, and henceBp5 . . . 51
in Eq. ~2!, then we recover the trace formula forr (A) @4–9#.
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If we set A5I as well, we recover the original Gutzwille
trace formula for the density of states@2#. This is the essen-
tial motivation of Main and Wunner for Eq.~2!. They pro-
vide strong numerical evidence in favor of it, but they do n
give an analytic derivation.

In this paper, we remedy this situation by deriving Eq.~2!
from a generalization of a trace formula originally due
Wilkinson @3# ~see also@5,8#!. Furthermore, we provide an
explicit expression for the smooth term.

II. ANALYSIS

We first consider the case of two operators,A andB, and
extend the results to an arbitrary number in Sec. III. Follo
ing Wilkinson @3#, we define

S~E,D![(
nm

AnmBmnd1„E2 1
2 ~En1Em!…

3d2„D2~En2Em!…. ~5!

Here d1(E) and d2(E) are smearedd functions. Rigorous
results concerningS(E,D) have been proven in the case th
the Fourier transforms of these smearedd functions have
compact support@8,9#. We will therefore make the simple
choice

d i~E![E
2t i

1t i dt

2p\
eiEt/\ ~6!

5
sin~Et i /\!

pE
, ~7!

wheret i , i 51,2, is a time cutoff. Our results will come from
various manipulations ofS(E,D) with D50.

We begin by writing

S~E,0!5d2~0!(
n

AnnBnnd1~En2E!

1
1

p (
n,mÞn

AnmBmn

sin~vnmt2!

En2Em

3d1„E2 1
2 ~En1Em!…, ~8!
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wherevnm[(En2Em)/\. The first term on the right-hand
side is the one we want; except for the factor ofd2(0)
5t2 /p\, it is the same as the right-hand side of Eq.~1!, in
the limit ast1→`. To get rid of the unwanted second term
we taket2 to be much greater than the Heisenberg timetH
[2p\r0; here

r0[E d2 fX

~2p\! f
d„E2H~X!… ~9!

is the Weyl formula for the mean density of states. Ift2
@tH , then we typically haveuvnmut2@1. In this case,
sin(vnmt2) varies erratically asn andm are varied. Further-
more, the factor of 1/(En2Em) can be written asr0 /(n
2m)5(tH/2p\)/(n2m), up to a factor which also varie
erratically. We then have

S~E,0!5
t2

p\ (
n

AnnBnnd1~En2E!

1
tH

2p2\ (
n,mÞn

AnmBmnRnm

n2m
d1„E2 1

2 ~En1Em!…,

~10!

where we can think ofRnm as a random number. Provide
that uAmnu and uBmnu do not tend to increase asum2nu in-
creases~in general, a decrease is to be expected!, the sum in
the second term should quickly converge. Then we have

p\

t2
S~E,0!5(

n
AnnBnnd1~En2E!1O~tH /t2!. ~11!

The first term on the right-hand side is the same as the ri
hand side of Eq.~1!, providedt1@tH , and the second term
is small if t2@tH .

We now wish to evaluateS(E,D) semiclassically. We
first use Eq.~6! in Eq. ~5! to get

S~E,D!5E
2t2

1t2 dt

2p\
e2 iDt/\E

2t1

1t1 dt8

2p\
e1 iEt8/\F~ t,t8!,

~12!

where we have defined

F~ t,t8![(
nm

AnmBmne
2 i (En1Em)t8/2\e1 i (En2Em)t/\.

~13!

The key point is that we can writeF(t,t8) as a single trace

F~ t,t8!5Tr U~2t1 1
2 t8!AU~ t1 1

2 t8!B, ~14!

whereU(t)5e2 iHt /\ is the time-evolution operator.
To simplify our exposition, we temporarily make the~oth-

erwise unnecessary! assumption that the Weyl symbols ofA
and B are functions of only the coordinatesq and not the
momentap. We can then evaluate the trace by inserting t
complete sets of position eigenstates, leading to
t-

o

F~ t,t8!5E dfq1dfq2^q1uU~2t1 1
2 t8!uq2&

3A~q2!^q2uU~ t1 1
2 t8!uq1&B~q1!. ~15!

We now make use of the semiclassical approximation@2,10#
to get

E dfq2^q3uU~2t1 1
2 t8!uq2&A~q2!^q2uU~ t1 1

2 t8!uq1&

> (
paths

Kpath~q3 ,q1 ;t8!A„qpath~ t1 1
2 t8!…. ~16!

Here the sum is over all classical paths that go fromq1 at
time zero toq3 at timet8, qpath(t) is the position reached a
time t along a particular path, andKpath(q3 ,q1 ;t8) is the
contribution of that path to the propagator^q3uU(t8)uq1& in
the semiclassical limit.

We now perform the integrals overdfq1 in Eq. ~15! and
over dt8 in Eq. ~12! by stationary phase@2–9#. We get a
contribution from zero-length paths~for which t850 at the
point of stationary phase!, and a sum over contributions from
periodic orbits~for which t85tp at the point of stationary
phase!. The result is

S~E,D!5E
2t2

1t2 dt

2p\
e2 iDt/\Fr0C0~ t !1

1

p\ (
tp,t1

wpCp~ t !G ,
~17!

where the sum is over all primitive periodic orbits with p
riod less thant1. Also, we have introduced the energ
surface correlation function

C0~ t ![
1

r0
E d2 fX

~2p\! f
d„E2H~X!…A„X~ t !…B~X!, ~18!

and the orbit correlation function

Cp~ t ![
1

tp
E

0

tp
dtA„Xp~t1t1 1

2 tp!…B„Xp~t!…. ~19!

Next, we must separate out a possible constant term
C0(t). To do so, we take the microcanonical average
A(X) on a surface of constant energyE,

A0[
1

r0
E d2 fX

~2p\! f
d„E2H~X!…A~X!, ~20!

and defineÃ(X)[A(X)2A0 and B̃(X)[B(X)2B0. We
then haveC0(t)5A0B01C̃0(t), where

C̃0~ t ![
1

r0
E d2 fX

~2p\! f
d„E2H~X!…Ã„X~ t !…B̃~X!. ~21!

Since the system is chaotic~and hence mixing!, C̃0(t)→0 as
t→6`. We now have
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S~E,D!5r0A0B0d2~D!1E
2t2

1t2 dt

2p\
e2 iDt/\Fr0C̃0~ t !

1
1

p\ (
tp,t1

wpCp~ t !G . ~22!

Next, we use the fact thatCp(t) is periodic int with period
tp , which allows us to write@3#

Cp~ t !5 (
k52`

1`

Gpke
12p ikt/tp, ~23!

where

Gpk5
1

tp
E

0

tp
dte22p ikt/tpCp~ t !. ~24!

We note in particular that

Gp05ApBp . ~25!

Now using Eq.~23! in Eq. ~22!, we get

S~E,D!5r0A0B0d2~D!1r0E
2t2

1t2 dt

2p\
e2 iDt/\C̃0~ t !

1
1

p\ (
tp,t1

wp (
k52`

1`

Gpkd2~D22p\k/tp!.

~26!

This result is a slight generalization of Wilkinson’s@3#.
We now setD50. For thek50 term in the sum over

orbit modes, we have a factor ofd2(0)5t2 /p\; for the k
Þ0 terms, we use Eq.~7!. After dividing through byd2(0),
and usingr05tH/2p\, the result is

p\

t2
S~E,0!5r0A0B01

tH

2t2
E

2t2

1t2 dt

2p\
C̃0~ t !

1
1

p\ (
tp,t1

wpGp0

1
1

p\ (
tp,t1

tp

t2
wp(

kÞ0

Gpk sin~2pkt2 /tp!

2pk
.

~27!

If we assumet2@t1, the last term can be neglected. Com
paring Eqs.~11! and ~27!, and recalling Eq.~25!, we verify
Eq. ~2!. This is our key result.

There is, however, an important caveat. We have ta
both t1 and t2 to be much greater thantH;\2( f 21). The
rigorous treatment of@8,9#, on the other hand, requirest1
and t2 to remain fixed as\→0, This suggests that a com
promise oft1,2;tH might be optimal, which is consisten
with other analyses of the trace formula@11–14#. To further
investigate this issue, we consider the special caseA5B.
The magnitude of fluctuations in the values of the diago
matrix elements of an operatorA have been previously
evaluated@4,6,7,15,16#, with the result that
n

l

r0
(A,A)5r0A0

21gE
2tH

1tH dt

2p\
C̃0~ t !. ~28!

Here g52 if the system is time reversal invariant, andg
51 if it is not. Equation~28! is consistent with Eqs.~11! and
~27! if we sett25tH/2g. We therefore conclude that, in th
more general case whereAÞB,

r0
(A,B)5r0A0B01gE

2tH

1tH dt

2p\
C̃0~ t !. ~29!

If we also sett15t2, then the final term in Eq.~27! will be
negligible for short periodic orbits~although it may become
significant as the orbit periodtp approachest2). This pro-
vides a theoretical explanation for the numerical results
Main and Wunner@1#.

Equation~29! is an explicit formula for the smooth term
However, fort1,2;tH , it is an uncontrolled approximation
since the neglected terms in Eqs.~11! and ~27! are not for-
mally suppressed. Nevertheless, the agreement of Eq.~28!
with the results of@4,6,7,15,16# leads us to believe that Eq
~29! is correct.

III. EXTENSIONS

We now return to Eq.~1! and consider a string of diagona
matrix elements ofN operators,A,B, . . . ,Z. We can find a
trace formula for Eq.~1! by starting from

F~ t1 , . . . ,tN!5Tr U~ t1!AU~ t2!B . . . U~ tN!Z. ~30!

We then make Fourier transforms with respect to suita
linear combinations of thet i ’s to construct

S~E,D2 , . . . ,DN!

5 (
nml . . .

AnmBml . . . d1S E2
1

N
~En1Em1 . . . ! D

3d2„D22~En2Em!…d3„D32~Em2El !… . . . .

~31!

A straightforward generalization of the analysis in Sec.
then leads to a result analogous to Eqs.~11! and ~27!, thus
verifying Eq. ~2!.

The leading contribution to the smooth term is of the fo
r0A0 . . . Z0. There are also subleading contributions that d
pend on various energy-surface correlation functions. For
ample, forN53 we have

r0
(A,B,Z)5r0A0B0Z01

g

2p\E2tH

1tH
dt@A0C̃0

BZ~ t !

1B0C̃0
ZA~ t !1Z0C̃0

AB~ t !#

1
1

r0
S g

2p\ D 2E
2tH

1tH
dt1E

2tH

1tH
dt2C̃0

ABZ~ t1 ,t2!.

~32!
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Here C̃0
AB(t) is given by Eq.~21!,

C̃0
ABZ~ t1 ,t2!5

1

r0
E d2 fX

~2p\! f

3d„E2H~X!…Ã„X~ t1!…B̃„X~ t2!…Z̃~X!,

~33!

and againg52 if the system is time-reversal invariant, an
g51 if it is not. This follows from requiring Eq.~32! to
reproduce Eq.~29! when we setZ5I .
.

K

re
IV. CONCLUSIONS

We have formulated and verified a precise version of E
~2!, which was originally proposed by Main and Wunner@1#
for chaotic systems. Our derivation provides an analytic
planation for their numerical results.

Main and Wunner also proposed an equation analogou
Eq. ~2! for integrable systems that generalizes the Ber
Tabor trace formula@17#. We have not attempted to deriv
this version, but clearly it would be of interest to do so.
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